

Analytical chemistry

The purpose of analytical chemistry is to gain information about the qualitative and quantitative composition of substances and chemical species. i.e. To find out what substance is composed of and exactly how much.

Analytical chemistry plays an important role in nearly all aspects of chemistry, for example, agricultural, clinical, environmental, forensic, manufacturing, and pharmaceutical chemistry. The nitrogen content of a fertilizer determines its value. Foods must be analyzed for contaminants (e.g. pesticide residues) or vitamin content. The air in cities must be analyzed for carbon monoxide. Blood glucose must be monitored in diabetics and most diseases are diagnosed by chemical analysis.

الغاية من الكيمياء التحليلية هو الحصول على معلومات حول التركيب النوعي والكمي للمواد والجسيمات الكيميائية، هذا يعني ايجاد مما تتكون المادة وكمية كل مادة بالضبط.

1-Qualitative analysis chemistry: الكيمياء التحليلية الوصفية

Include separation and identification of elements and substances in a mixture.

تتضمن فصل وتشخيص العناصر والمواد في المخلوط.

2-Quantitative analytical chemistry: الكيمياء التحليلية الكمية

Quantitative analytical chemistry deals with the determination of how much of one or more constituents is present in a sample. Based upon the measurement of a physical property such as weight, volume, optical, current etc. which is related directly or indirectly to the amount of the desired constituents (substances determined).

يتضمن التقدير الكمي معرفة الكمي بالضبط لمكون أو أكثر في النموذج بالاعتماد على قياس صفة فيزيائية مثل الوزن، الحجم، الطيف، التيار.....والخ. والتي لها علاقة مباشره أو غير مباشره مع المادة محللة.

Methods of quantitative analytical chemistry:

It divided into:

- 1; Gravimetric methods of analysis.
- 2; Volumetric methods of analysis.
- 3; Instrumental methods of analysis.

Gravimetric methods of analysis:

الطرائق الوزنية في التحليل

Gravimetric analysis is one of the most accurate and precise methods of macro-quantitative analysis. From the weight of the precipitate and a knowledge of its chemical composition, the weight of analyte in the desired form is calculated

الطرائق الوزنية في التحليل هي واحدة من أفضل الطرائق ذات الدقة والضبط العاليين في التحليل الكمي، ومن خلال وزن الراسب ومعلومات المكونات الكيميائية له يمكننا حساب وزن الماده المرغوب تحليلها.

Steps in Gravimetric Analysis

The steps required in a gravimetric analysis, can be summarized as follows:

- 1- Sample dissolution
- 2- Preliminary treatment
- 3- Precipitation
- 4- Digestion
- 5- Filtration
- 6- Washing
- 7- Drying
- 8- Weighing

يتضمن التقدير الكمي الوزني للمواد بتهيئة واذابة النموذج ثم ترسيب الماده المرغوب فيها وفصلها عن طريق ترشيح الراسب وغسله ثم تجفيفه وزنه، ومن وزن الراسب يمكن حساب كمية الماده المحللة.

Steps in Gravimetric analysis: خطوات التحليل الوزني

1- Sample dissolution

- Drying the sample for 1hr at $\approx 100^{\circ} \text{C}$
- Weighing the sample
- Selecting a suitable solvent for dissolution

اذابة العينة

تجفيف النموذج

وزن النموذج

اختيار المذيب المناسب للاذابة ويفضل الماء

2- Preliminary treatment of sample solution:-

المعالجة الاولية لمحلول العينة

- Preparing suitable condition for precipitation, such as PH-control, volume of solution and temperature, in order to reduce the solubility of the precipitate.

تهيئة الظروف المناسبة للترسيب مثل السيطرة على الدالة الحامضية، وحجم المحلول ودرجة الحرارة لغرض تقليل ذوبانية الراسب.

3- Precipitation

الترسيب

Addition of precipitant slowly and with shaking to the analyzed substance in order to form a precipitate of large crystal easily filterable.

اضافة العامل المرسب بشكل بطيء مع التحريك الى محلول المادة محللة من اجل الحصول على راسب ذو بلورات كبيرة سهلة الترشيح.

4- Digestion

الهضم

Leaving the precipitate in contact with the mother liquor for a fixed time in order to grow the small crystals into large crystals easy to filter.

هي عملية ترك الراسب في تماس مع محلول الام الاصلی لمدة زمنية محددة من اجل نمو البلورات الصغيرة الى بلورات كبيرة سهلة الترشيح.

5- Filtration

الترشيح

Is a process of separating the precipitate produced from the mother liquor by using filter paper or crucible.

هي عملية فصل الراسب المكون عن المحلول الأم الأصلي وذلك باستخدام ورقة ترشيح او جفنة ترشيح.

6- Washing

الغسل

This is carried out using a certain liquid in order to eliminate impurities and any traces of the mother liquor. The liquid used for washing should have the following properties:

- Easy volatile electrolyte
- Not dissolve the precipitate
- Not react with the precipitate

تتم عملية غسل الراسب باستخدام محلول معين من أجل إزالة الشوائب واي آثار من محلول الأم الأصلي العالق بحببيات الراسب ويجب أن يكون الكتروليت سهل التطاير، ولا يذيب الراسب، ولا يتفاعل مع الراسب.

7- Drying or ignition

التجفيف او الحرق

The aim of drying is to remove any traces of washing liquid or water molecules and volatile impurities from the precipitate. This drying can usually be heating at 110° to 120° C for 1 to 2 hours. **Ignition** is used to convert the precipitate form into a chemically stable weighing form, and it is done at a much higher temperature as usually required.

الغرض من عملية التجفيف او الحرق هو لإذابة اي بقايا من سائل الغسيل وجزيئات الماء والشوائب المتطايرة. يستخدم الحرق لتحويل الصورة المترسبة الى صورة موزونة ثابتة كيميائيا.

8- Weighing

الوزن

Using a sensitive balance to determine the quantity of the precipitate.

استخدام الميزان الحساس لتقدير كمية الراسب.

Properties of precipitate for gravimetric method

خواص الراسب في التحليل الوزني

1- The solubility of the precipitate should be very low.

يجب ان تكون قابلية ذوبان الراسب قليلة جداً.

2- The weighing form should contain one compound with stable and known chemical formula.

يجب ان تكون الصورة الموزونة عبارة عن مركب واحد له صيغة كيميائية ثابتة و معروفة.

3- The crystals precipitate must be large enough to be filtered but not so large as to trap amount of mother liquor.

يجب ان تكون البلورات كبيرة ليسهل ترشيحها. ولكن غير كبيرة جداً بحيث تحيط بين طياتها كمية من محلول الام الاولي (محلول الترسيب).

4- The precipitate must be free of contamination by substances which cannot be removed either by washing or drying process.

يجب ان يكون الراسب خالي من المواد الملوثة والتي لا يمكن ازالتها بعمليات الغسل او التجفيف.

5- The precipitate must be stable with the temperature of drying.

يجب ان يكون الراسب مستقراً عند درجة حرارة التجفيف.

6- The precipitating agent should be specific (precipitate the substance to be determined only).

يجب ان يكون العامل المرسّب انتقائي (يرسّب فقط المادة المراد تقديرها او المحلول).

7- Small amount of substance to be determined should yield large weight of precipitate so that weighing error is low.

كمية قليلة من المادة المحلول تعطي كمية كبيرة من الراسب حتى تكون الاخطاء المتناسبة نتيجة الوزن قليلة.

Co-precipitation

الترسيب المشارك

Precipitation of the impurities during the time of precipitating the main analyzed substance.

ترسيب الشوائب خلال زمن ترسيب المادة المحللة الرئيسية.

Post – precipitation

الترسيب اللاحق

Precipitation of impurities after a time of precipitating the main analyzed substance.

ترسيب الشوائب بعد فترة من ترسيب المادة المحللة الرئيسية مثل ترسيب المغنيسيوم على شكل اوكرزات الكالسيوم.

Peptization process

التبغز او تفكيك وتفريق الراسب

Is the decomposition of a colloidal precipitate such as $Fe(OH)_3 \cdot xH_2O$ if it is washed with unsuitable electrolyte solution.

عملية تفكيك الراسب الغروي مثل راسب هيدروكسيد الحديديك اذا غسل بمحلول الكتروليتي غير مناسب.

Calculations in gravimetric analysis

الحسابات في التحليل الوزني

$$\text{Gravimetric factor} = \frac{\text{Atomic or molecular weight of substance determined}}{\text{Molecular weight of the precipitate}}$$

$$\text{العامل الوزني} = \frac{\text{الوزن الذري او الوزن الجزيئي للمادة المقدرة}}{\text{الوزن الجزيئي للراسب او الماده الموزونة}}$$

Substance detd. المادة المقدرة	Subs. ppted. or weighed المادة المترسبة او الموزونه	gravi. F العامل الوزني
SO_4^{2-}	$BaSO_4$	$\frac{M. \text{wt. of } SO_4^{2-}}{M. \text{wt. of } BaSO_4}$
Cl^-	$AgCl$	$\frac{at. \text{wt. of } Cl^-}{M. \text{wt. of } AgCl}$
Fe	Fe_2O_3	$\frac{2 \times at. \text{wt. of } Fe}{M. \text{wt. of } Fe_2O_3}$
Al	Al_2O_3	$\frac{2 \times at. \text{wt. of } Al}{M. \text{wt. of } Al_2O_3}$

Ex 1:

In the analysis for chloride, the sample weight 0.8732g and the $AgCl$ precipitate from the sample weighted 1.0292g. Calculate the percent (%) of chloride in the sample.

في تحليل الكلوريد كان وزن النموذج 0.8732 غم وزن راسب كلوريد الفضة من النموذج هو 1.0292 غم. احسب النسبة المئوية للكلوريد في النموذج.

Sol:

$$\text{Gravimetric factor} = \frac{\text{at. wt. of } Cl}{\text{M. wt. of } AgCl} = \frac{35.5}{107 + 35.5} = 0.2474$$

$$\begin{aligned} \text{Weight of } Cl^- &= \text{weight of precipitate } (AgCl) \times \text{gravimetric factor} \\ &= 1.0292 \times 0.2474 \\ &= 0.2546g \text{ of } Cl^- \end{aligned}$$

$$\% Cl^- = \frac{\text{weight of } Cl^-}{\text{weight of sample}} \times 100 = \frac{0.2546}{0.8732} \times 100 = 29.66\% Cl^-$$

Ex 2:

A sample containing phosphorus weighing 0.703g was dissolved and the phosphorus was precipitated as magnesium ammonium phosphate ($MgNH_4PO_4$) and was ignited as magnesium pyrophosphate ($Mg_2P_2O_7$) and its weight was 0.432g. Calculate the percent of (%) of phosphorus in the sample.

Sol:

$$\begin{aligned} \text{Gravimetric Factor of P} &= \frac{2 \times \text{at. wt. of } p}{\text{M. wt. of } Mg_2p_2O_7} \\ &= \frac{2 \times 30.9}{2 \times 54.9 + 2 \times 30.9 + 7 \times 16} \\ &= 0.278 \end{aligned}$$

$$\text{Weight of } P = \text{wt. of ppt.} \times G.F.$$

وزن الفسفور = وزن الراسب \times العامل الوزني

$$= 0.432 \times 0.278 = 0.12006g$$

$$\% \text{ of } P = \frac{\text{wt. of } p}{\text{wt. of sample}} \times 100 = \frac{0.12006}{0.703} \times 100 = 17.07\% \text{ of } P$$

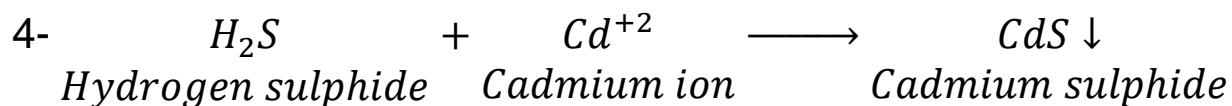
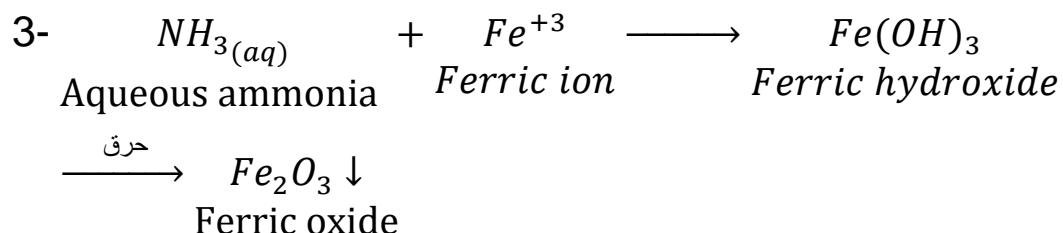
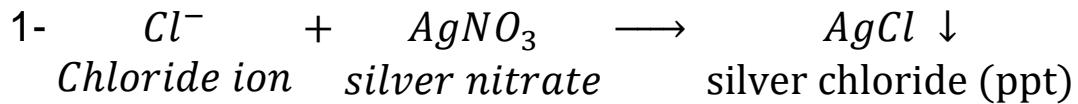
Home Work

A sample containing sulphate (SO_4^{2-}) weighing 0.321g was dissolved the sulphate was precipitated as ($BaSO_4$) barium sulphate and weigh 0.0979g. Calculate the percent (%) of SO_4^{2-} and (%) of S in the sample.

At. Wt. of S = 32 , Ba = 137.34 , O = 16 gm/mole

Sol : % of SO_4^{2-} = 12.46 %
% of S = 4.153 %

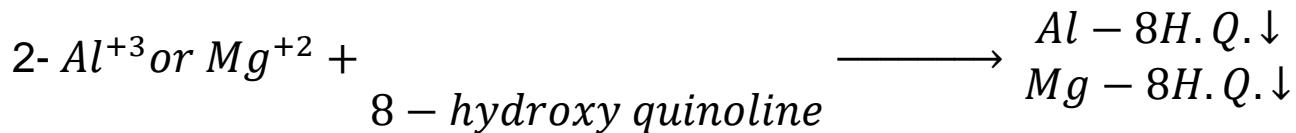
Kinds of the precipitating Methods:




1- Formation of a precipitate by adding a precipitants; and these divided into two kinds :-

تكوين الراسب من خلال اضافة العامل المرسّب وهذه تقسم الى نوعين:

a- Inorganic precipitant

Such as; Cl^- , SO_4^{2-} , NH_3 , H_2S etc.


Examples:

b- Organic precipitant

مرسيبات عضوية

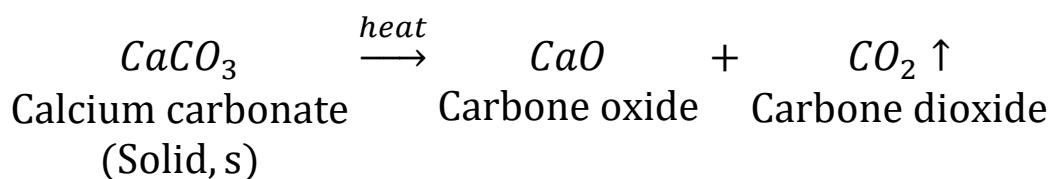
There is a large number of organic compounds that are very useful as precipitating agents for metals such as DMG, Oxine (8-Hydroxy Quinoline), EDTA (Ethylene diamine tetra acetic acid) etc.

2- Electro deposition

الترسيب الكهربائي

The desired constituent is isolated at an electrode by passage of current.

If the weight of the electrode is taken before and after the plating process, the difference in weight corresponds to the amount of the desired constituent.


المواد المطلوبه تعزل على أحد الأقطاب من خلال امداد التيار الكهربائي، وعندما يحسب وزن القطب قبل وبعد عملية الترسيب سنتمكن عندها من خلال فرق الوزن معرفة وزن الماده المراد معرفتها.

3- Volatilization

التبخير

The sample is decomposed by a known stoichiometric reaction in which one of the product is volatilized. The difference in weight before and after volatilization indicate the amount of vaporized constituents. The weight loss is due to decomposition of compound.

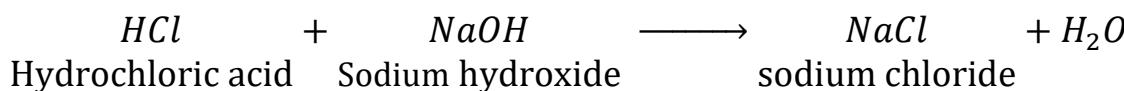
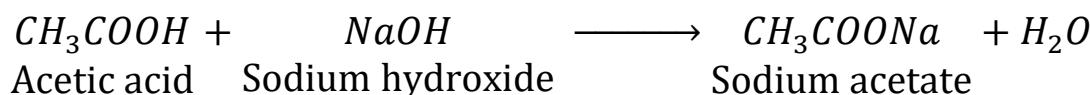
هنا يتجزأ النموذج بطرق كيميائيه محسوبه بدقة وفيها أحد النواتج يتبخّر و فرق الوزن قبل وبعد عملية التبخير تعطينا مقدار الماده المتبخّره .

Volumetric methods of analysis

الطرائق الحجمية في التحليل

Involve measurement of the volume of titrant that is equivalent to the analyze substance by a process called (Titration). In titration one of the reactants is prepared as a solution of known concentration and is called (Titrant).

A stoichiometric reaction between the titrant (in the burette) and the sample (in the flask) is reached and detected by either indicators or instrumental method of analysis.

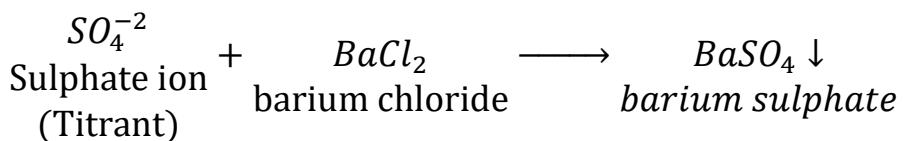
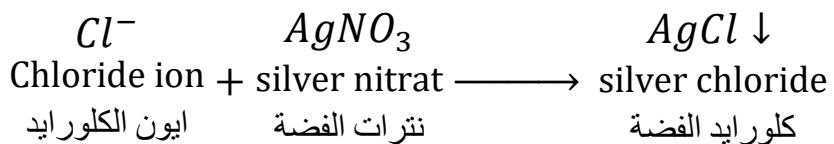


تتضمن عملية قياس حجم المسح المكافئ للمادة المحللة بعملية تسمى التسحیج. في عملية التسحیج تحضر احدى مواد التسحیج ك محلول ذو تركيز معلوم بالضبط يسمى (المسح). يضاف المسح الموضع في السحاحة الى محلول النموذج المحلل في دورق التسحیج. يحصل تفاعل تكافؤي بين المسح و محلول النموذج المحلل ويكشف عن نقطة التكافؤ (equivalent point) باستخدام دلائل مناسبة او باحدى طرق التحليل الالي.

Types of volumetric Titrations

1- **ACID- BASE titration** : Many compounds, both inorganic and organic, are either acids or bases, can be titrated with a standard solution of a strong base or a strong acid. The end points of these titrations are easy to detect, either by means of an indicator or by following the change in pH with a pH meter.

تسريحات الحوامض والقواعد : العديد من المركبات اللاعضوية والعضوية هي أما حوامض او قواعد وبالإمكان تسريحها بمحاليل قياسية ومعرفة نقطة نهاية التفاعل من خلال الكواشف او أجهزة قياس الحموضة.

Example:

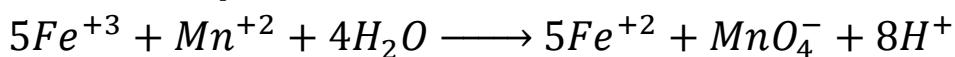


2- PRECIPITATION titration :

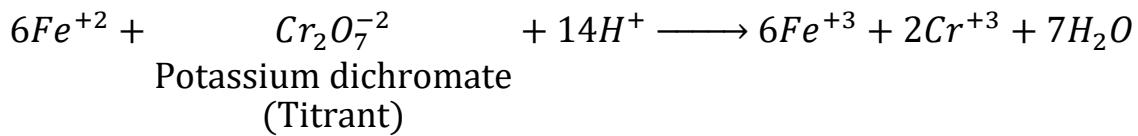
تسريحات الترسيب

IN the case of precipitation, the titrant forms an insoluble product with the analyte. An example is the titration of chloride ion with silver nitrate solution. Again, indicators can be used to detect the end point, or the potential of the solution can be monitored electrically.

في حالة الترسيب، فإن الراشح يكون نواتج غير ذاتيه مع الماده المراد تحليلها، كما في المثال المبين أدناه.

Examples:

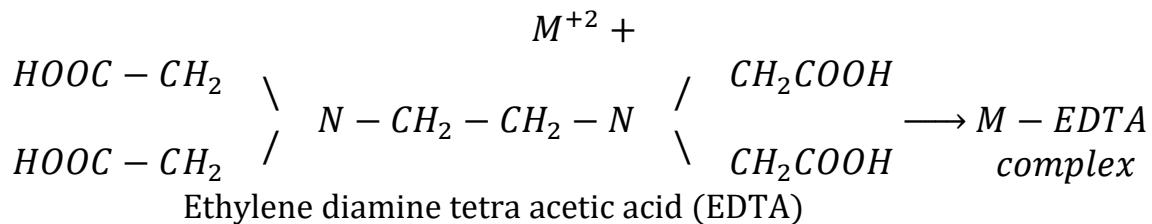

3- REDUCTION – OXIDATION titration


تحصیلات الأکسدة والاختزال

These "redox" titrations involve the titration of an oxidizing agent with a reducing agent, or vice versa. An oxidizing agent gains electrons and a reducing agent loses electrons in a reaction between them. Appropriate indicators can be used for these titrations, or various electrometric means can be used to detect the end point.

هذه التسريحات تتضمن تسريح عامل مؤكسد معين مع عامل مختزل أو بالعكس، والعامل المؤكسد يحصل على الالكترونات والعامل المختزل يفقد الالكترونات في التفاعل، وتستخدم كواشف أو أجهزة الكترونية لقياس نقطة النهاية.

Examples:


4- Complexometric titration :

تسريحات تكوين المعقد

In complexometric titration, the titrant is a complexing agent and forms a water-soluble complex with the analyte, a metal ion. The titrant is often a chelating agent (type of complexing agent that contains two or more groups capable of complexing with a metal ion). EDTA is one of most useful chelating agents used for titration

في تسيحيات تكوين المعقد، فإن المسحح هو عامل تعقيدي أو مخلبى ويكون معقد ذاتي بالماء مع الماده المراد تحليلها او ايون الفلز .

Example:

Instrumental methods of analysis:

طرق التحويل الآلي:

1- Optical methods

الطرق البصرية :

Based on how the sample acts toward electromagnetic radiation such as UV (ultraviolet), IR (infrared). The analysis substance either absorb or emitted radiation and measurement of the absorbed or emitted radiation which is related to the concentration of the analyzed substance. The instrument used for such measurement is called spectrophotometer.

تعتمد على كيفية تصرف المادة المحللة مع الاشعة الكهرومغناطيسية مثل الاشعة فوق البنفسجية UV او الاشعة تحت حمراء IR. تمتلك المادة المحللة او تبعثر اشعة. ومن قياس كمية الاشعة الممتصة او المذروعة يمكن معرفة تذكرة المادة المحللة، باسم: الجهاز المستخدم في هذه الطريقة: المطراف،

سپکترو فوتومیٹر Spectrophotometer

2- Electrical methods of analysis : الطرق الكهربائية في التحليل

Involve electric instruments that used to measure or produce electric phenomenon. Such as current, potential or conductance which are related to the reaction take place or are causing a reaction to take place.

تتضمن استخدام اجهزة كهربائية التي تقيس او تنتج ظاهرة كهربائية مثل التيار او الجهد او التوصيل الكهربائي والتي يكون لها علاقة مع التفاعل الذي يحدث او تسبب حدوث تفاعل. وتسمى الطرق :-

potentiometry
polarography
conductometry

قياس الجهد (بالبوتينشيومني)
وطرق قياس التيار (بالبوليغرافي)
وطرق قياس التوصيل الكهربائي (بالكونداكتومي)